Эйлер — великий математик: сочинение

Эйлер — великий математик

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был прежде всего математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность.

Имя Эйлера дорого всему прогрессивному человечеству, которое чтит в нём одного из величайших геометров мира. В качестве члена Петербургской и Берлинской Академий наук Эйлер содействовал развитию математических наук в обеих странах и распространению в них физико-математических знаний.

Леонард Эйлер был избран академиком (и почётным академиком) в восьми странах мира. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Трудно даже перечислить все отрасли, в которых трудился великий учёный.

Неоценимо велика роль Эйлера в создании классических образцов учебной литературы и в стимулировании творчества многих поколений математиков. “Читайте, читайте Эйлера, он наш общий учитель”, — любил повторять Лаплас. И труды Эйлера с большой пользой для себя читали — точнее, изучали — и “король математиков” Карл Фридрих Гаусс, и чуть ли не все знаменитые учёные последних двух столетий.

Даже сейчас, через много лет после смерти Эйлера, его работы побуждают учёных всего мира к творчеству в самых различных областях математики и её приложений.

Всем нам знакомы понятия о точках Эйлера, прямой Эйлера и окружности Эйлера в треугольнике; о теореме Эйлера для многогранников. Один из простейших методов приближённого решения дифференциальных уравнений, широко применявшийся до самых последних лет, называется методом ломаных Эйлера; во многих разделах математики важную роль играют Эйлеровы интегралы (бета-функция и гамма-функция Эйлера). В механике при описании движения тел пользуются углами Эйлера, в гидродинамике рассматривается число Эйлера. Нет, пожалуй, ни одной значительной области математики, в которой не оставил бы след один из величайших математиков всех времён и народов, гений XVIII в. Леонард Эйлер.

В 1963 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника. А 15 апреля 1707 г. у них родился сын, названный Леонардом.

Начальное обучение будущий учёный прошел дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой, как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого.

Когда у Леонардо проявился интерес к учёбе, его направили в базельскую латинскую гимназию под надзор бабушки.

20 октября 1720 г. 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета, так как отец желал, чтобы он стал священником. Но любовь к математике, блестящая память и отличная работоспособность сына изменили эти намерения и направили Леонарда по иному пути.

Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике. И немудрено, что способный мальчик вскоре обратил на себя внимание Бернулли. Он предложил юноше читать математические мемуары, а по субботам приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Николаем и Даниилом, также увлечённо занимавшимися математикой. А 8 июня 1724 г. 17-летний Леонард Эйлер произнёс по латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона и был удостоен учёной степени магистра (в XIX в. в большинстве университетов Западной Европы ученая степень магистра была заменена степенью доктора философии).

В последующие два года юный Эйлер написал несколько научных работ. Другая работа, “Диссертация по физике о звуке”, также получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики. Но, несмотря на положительный отзыв о “Диссертации”, 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Однако это обстоятельство обернулось счастьем и для самого Эйлера и для науки в целом.

Вначале зимы 1726 года Эйлеру сообщили из Петербурга, что по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии. Эйлер был молод и полон энергии. Ни в магистрате, ни в университете он не мог найти применения своим силам и способностям. 5 апреля 1727 года он навсегда покидает Швейцарию.

В начале XVIII в. великий философ и математик Г. В. Лейбниц разработал проект создания академий в различных городах Европы.

По просьбе Петра I Лейбниц прислал и в Петербург несколько писем-рекомендаций по организации Академии.

22 января 1724 г. Пётр I утвердил проект устройства Петербургской Академии. 28 января вышел указ сената о создании Академии. Из 22 профессоров и адъюнктов, приглашённых в первые годы, оказалось 8 математиков, которые занимались также механикой, физикой, астрономией, картографией. С первых лет своего существования Петербургская Академия занялась и подготовкой русских учёных. Позднее при Академии были созданы университет и гимназия.

Академия обратилась к своим членам с просьбой составить руководства для первоначального обучения наукам. И Эйлер, не считаясь со временем, составил на немецком языке прекрасное “Руководство к арифметике”, которое вскоре было переведено на русский язык и сослужило добрую службу многим учащимся. Перевод первой части выполнил в 1740 г. первый русский адъюнкт Академии, ученик Эйлера Василий Адодуров. На русском языке это было первым изложением арифметики как математической науки.

В 1730 г., когда на русский престол вступила Анна Иоанновна, страной фактически стали править её приближённые. Они видели в Академии учреждение, которое требовало много денег и не приносило ощутимой пользы. Ходили даже слухи о скором закрытии Академии.

Однако Академия продолжала существовать. Освободившееся место профессора физики было предложено Эйлеру. Одновременно он получил и значительное увеличение оклада. Ещё через два года Эйлер стал академиком и профессором чистой математики.

В один из последних дней 1733 г. 26-летний Леонард Эйлер женился на дочери живописца Екатерине Гзель, которой в это время тоже было 26 лет. Оказывается, великий математик может не только вычислять и анализировать, он не чужд и мирской жизни.

Эйлер отличался феноменальной работоспособностью. Он просто не мог не заниматься математикой или её приложениями. В 1735 г. Академия получила задание выполнить срочное и очень громоздкое астрономическое вычисление. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за 3 дня и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз. Однако учёный отнёсся к несчастью с величайшим спокойствием: “Теперь я меньше буду отвлекаться от занятий математикой”, — философски заметил он.

До этого времени Эйлер был известен лишь узкому кругу учёных. Но двухтомное сочинение “Механика, или наука о движении, в аналитическом изложении”, изданное в 1736 г.

“Тот, кто имеет достаточные навыки в анализе, сможет всё увидеть с необычайной лёгкостью и без всякой помощи прочитает работу полностью”, — заканчивает Эйлер своё предисловие к книге.Дух времени требовал аналитического пути развития точных наук, применения дифференциального и интегрального исчисления для описания физических явлений. Этот путь и начал прокладывать Леонард Эйлер.

“30-летний Эйлер стал знаменитостью, — пишет его биограф Отто Шпис. — Однако плохо, что он жил в далёком Петербурге, где Академия не пользовалась должным уважением, и к тому же в постоянной вражде с “правителем дел” Шумахером”.

Обстоятельства ухудшились, когда в 1740 г. умерла императрица Анна Иоанновна, царём был объявлен малолетний Иоанн VI. “Предвиделось нечто опасное, — писал позднее Эйлер в автобиографии. — После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным”.

Эйлер принимает предложение прусского короля, который приглашал его в Берлинскую Академию на весьма выгодных условиях.

В соответствии с поданным Эйлером прошением он был “отпущен от Академии в 1741 году” и утверждён почётным академиком. Он обещал по мере своих сил помогать Петербургской Академии и действительно помогал весьма существенно все 25 лет, пока не вернулся обратно в Россию. В июне 1741 г. Леонард Эйлер с женой, двумя сыновьями и четырьмя племянниками прибыл в Берлин.

В течение всего времени пребывания в Берлине Эйлер продолжал оставаться почётным членом Петербургской Академии. Как он и обещал при отъезде из Петербурга, он по-прежнему печатал многие из своих трудов в изданиях Петербургской Академии; редактировал математические отделы русских журналов; приобретал из Петербурга книги инструменты; иной раз и у него на квартире, на полном пансионе, разумеется, за соответствующую оплату (которую, кстати, канцелярия Академии присылала с большим опозданием), годами жили молодые русские учёные, командированные на стажировку.

В 1742 г. вышло четырёхтомное собрание сочинений И. Бернулли. Посылая его из Базеля Эйлеру в Берлин, старый учёный писал своему ученику: “Я посвятил себя детству высшей математики. Ты, мой друг, продолжишь её становление в зрелости”.

Эйлер оправдал надежды своего учителя. Одна за другой выходят его научные работы колоссальной важности: “Введение в анализ бесконечных” (1748 г.), “Морская наука” (1749 г.), “Теория движения луны” (1753 г.), “Наставление по дифференциальному исчислению” (1755 г.) — не говоря уже о десятках статей по отдельным частным вопросам, печатавшихся в изданиях Берлинской и Петербургской Академий.

Огромную популярность приобрели в XVIII, а отчасти и в XIX в. Эйлеровы “Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе…”, которые выдержали свыше 40 изданий на 10 языках.

Эйлер не стремится удивить читателя; он вместе с читателем как бы проходит весь путь, ведущий к открытию, показывает всю цепь рассуждений и умозаключений, приводящую к результату. Он умеет поставить себя в положение ученика; он знает, в чём ученик может встретить затруднение и стремится предупредить это затруднение.

В 1757 г. Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения.

Почти сто лет спустя, когда во многих странах стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.

Эйлер “выдавал” в среднем 800 страниц “ин-кварто” в год. Это было бы немало даже для создателя романов; для математика же такой объём научных трудов, очень чётко изложенных, включающих механику и теорию чисел, анализ и музыку, астрономию и физику, теорию вероятностей и оптику, был очень большим

Однако в 1762 г. на русский престол вступила Екатерина II, получившая прозвище “Великая”, которая осуществляла политику “просвещённого абсолютизма”. Она хорошо понимала значение науки как для процветания государства, так и для собственного престижа; провела ряд важных по тому времени преобразований в системе народного просвещения и культуры.

Фридрих II “отпускал” на Берлинскую Академию лишь 13 тыс. талеров в год, а Екатерине II ассигновала свыше 60 тыс. рублей — сумму более значительную.

Императрица приказала предложить Эйлеру управление математическим классом (отделением), звание конференц-секретаря Академии и оклад 1800 рублей в год. “А если не понравится, — говорилось в письме, — благоволит сообщить свои условия, лишь бы не медлил приездом в Петербург”.

Эйлер подаёт Фридриху прошение об увольнении со службы. Тот не отвечает. Эйлер пишет вторично — но Фридрих не желает даже обсуждать вопрос об отъезде Эйлера. В ответ на это он перестаёт работать для Берлинской Академии.

30 апреля 1766 г. Фридрих разрешает наконец-то уехать в Россию великому учёному. Сразу же по прибытии Эйлер был принят императрицей. Екатерина осыпала учёного милостями: пожаловала деньги на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии.

После возвращения в Петербург у Эйлера образовалась катаракта второго, левого глаза, и он перестал видеть. Однако это не отразилось на его работоспособности. Он диктует свои труды мальчику-портному, который всё записывал по-немецки.

В 1771 г. в жизни Эйлера произошли два серьёзных события.

В мае в Петербурге возник большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спас приехавший ранее из Базеля швейцарский ремесленник Петр Гримм. Все рукописи удалось уберечь от огня; сгорела лишь часть “Новой теории движения луны”, но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память.

Слепому старцу пришлось переселиться в другой дом, расположение комнат и предметов в котором было ему незнакомо. Однако эта неприятность оказалась, к счастью, лишь временной.

В сентябре того же года в Санкт-Петербург прибыл известный немецкий окулист барон Венцель, который согласился сделать Эйлеру операцию и удалил с левого глаза катаракту. За работой приезжей знаменитости приготовились было наблюдать 9 местных светил медицины. Но вся операция заняла 3 минуты, и Эйлер снова стал видеть!

Искусный окулист предписал беречь глаз от яркого света, не писать, не читать — лишь постепенно привыкать к новому состоянию. Но разве мог Эйлер “не вычислять”? Уже через несколько дней после операции он снял повязку. И вскоре потерял зрение снова. На этот раз окончательно. Однако, как ни странно, отнёсся он к событию с величайшим спокойствием. Научная продуктивность его даже возросла: без помощников он мог только размышлять, а когда приходили помощники, диктовал им или писал мелом на столе, кстати сказать, вполне разборчиво, ибо кое-как мог отличить белый цвет от чёрного.

В 1773 г. по рекомендации Д. Бернулли в Петербург приехал из Базеля его ученик Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера.

«Эйлер — великий математик»

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был, прежде всего, математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность.

Имя Эйлера дорого всему прогрессивному человечеству, которое чтит в нём одного из величайших геометров мира. В качестве члена Петербургской и Берлинской Академий наук Эйлер содействовал развитию математических наук в обеих странах и распространению в них физико-математических знаний Леонард Эйлер был избран академиком (и почётным академиком) в восьми странах мира. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук.

Трудно даже перечислить все отрасли, в которых трудился великий учёный. Но в первую очередь он был математиком Неоценимо велика роль Эйлера в создании классических образцов учебной литературы и в стимулировании творчества многих поколений математиков. «Читайте, читайте Эйлера, он — наш общий учитель» , — любил повторять Лаплас. И труды Эйлера с большой пользой для себя читали — точнее, изучали — и «король математиков» Карл Фридрих Гаусс, и чуть ли не все знаменитые учёные последних двух столетий. Даже сейчас, через много лет после смерти Эйлера, его работы побуждают учёных всего мира к творчеству в самых различных областях математики и её приложений. Всем нам знакомы понятия о точках Эйлера, прямой Эйлера и окружности Эйлера в треугольнике; о теореме Эйлера для многогранников. Один из простейших методов приближённого решения дифференциальных уравнений, широко применявшийся до самых последних лет, называется методом ломаных Эйлера; во многих разделах математики важную роль играют Эйлеровы интегралы (бета-функция и гамма-функция Эйлера) . В механике при описании движения тел пользуются углами Эйлера, в гидродинамике рассматривается число Эйлера… Нет, пожалуй, ни одной значительной области математики, в которой не оставил бы след один из величайших математиков всех времён и народов, гений XVIII в. Леонард Эйлер. В 1963 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника.

Читайте также:  Литературная деятельность Альберта Камю: сочинение

А 15 апреля 1707 г. у них родился сын, названный Леонардом. Начальное обучение будущий учёный прошел дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого. Когда у Леонардо проявился интерес к учёбе, его направили в базельскую латинскую гимназию — под надзор бабушки. 20 октября 1720 г. 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета: отец желал, чтобы он стал священником. Но любовь к математике, блестящая память и отличная работоспособность сына изменили эти намерения и направили Леонарда по иному пути. Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике.

И немудрено, что способный мальчик вскоре обратил на себя внимание Бернулли. Он предложил юноше читать математические мемуары, а по субботам приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Николаем и Даниилом, также увлечённо занимавшимися математикой. А 8 июня 1724 г. 17-летний Леонард Эйлер произнёс по – латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона — и был удостоен учёной степени магистра (в XIX в. в большинстве университетов Западной Европы ученая степень магистра была заменена степенью доктора философии). В последующие два года юный Эйлер написал несколько научных работ. Другая работа, «Диссертация по физике о звуке» , также получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики. Но, несмотря на положительный отзыв о «Диссертации» , 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Однако это обстоятельство обернулось счастьем и для самого Эйлера и для науки в целом. Вначале зимы 1726 года Эйлеру сообщили из Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии. Эйлер был молод и полон энергии. Ни в магистрате, ни в университете он не мог найти применения своим силам и способностям. 5 апреля 1727 года он навсегда покидает Швейцарию В начале XVIII в. великий философ и математик Г. В. Лейбниц разработал проект создания академий в различных городах Европы.

По просьбе Петра I Лейбниц прислал и в Петербург несколько писем-рекомендаций по организации Академии. 22 января 1724 г. Пётр I утвердил проект устройства Петербургской Академии. 28 января вышел указ сената о создании Академии. Из 22 профессоров и адъюнктов, приглашённых в первые годы, оказалось 8 математиков, которые занимались также механикой, физикой, астрономией, картографией… С первых лет своего существования Петербургская Академия занялась и подготовкой русских учёных. Позднее, при Академии созданы университет и гимназия. Академия обратилась к своим членам с просьбой: составить руководства для первоначального обучения наукам. И Эйлер, не считаясь со временем, составил на немецком языке прекрасное «Руководство к арифметике» , которое вскоре было переведено на русский и сослужило добрую службу многим учащимся. Перевод первой части выполнил в 1740 г. первый русский адъюнкт Академии, ученик Эйлера Василий Адодуров. На русском языке это было первым изложением арифметики как математической науки. В 1730 г., когда на русский престол вступила Анна Иоанновна, страной фактически стали править её приближённые. Они видели в Академии учреждение, которое требовало много денег и не приносило ощутимой пользы. Ходили даже слухи о скором закрытии Академии Однако Академия продолжала существовать.

Освободившееся место профессора физики было предложено Эйлеру. Одновременно он получил и значительное увеличение оклада. Ещё через два года Эйлер стал академиком и профессором чистой математики В один из последних дней 1733 г. 26-летний Леонард Эйлер женился на дочери живописца Екатерине Гзель, которой в это время тоже было 26 лет. Свадьба, Новый год — два праздника сразу! Вся Академия сердечно поздравляет молодожёнов. Оказывается, великий математик может не только вычислять и анализировать, он не чужд и мирской жизни. Молодожёнам преподнесли сочинённые к случаю стихи. Вот одна строфа из них: В том усомниться мог ли кто-то, Что Эйлер удивит весь мир, Что только цифры и расчёты Его единственный кумир. Теперь совсем в другом он мире, Где чувства, счастье и любовь И то, что дважды два — четыре, Доказывать придётся вновь! Эйлер отличался феноменальной работоспособностью. Он просто не мог не заниматься математикой или её приложениями. В 1735 г. Академия получила задание выполнить срочное и очень громоздкое астрономическое вычисление. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за 3 дня — и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз.

Однако учёный отнёсся к несчастью с величайшим спокойствием: «Теперь я меньше буду отвлекаться от занятий математикой» , — философски заметил он До этого времени Эйлер был известен лишь узкому кругу учёных. Но двухтомное сочинение «Механика, или наука о движении, в аналитическом изложении» , изданное в 1736 г., принесло ему мировую славу. Эйлер блестяще применил методы математического анализа к решению проблем движения в пустоте и в сопротивляющейся среде «Тот, кто имеет достаточные навыки в анализе, сможет всё увидеть с необычайной лёгкостью и без всякой помощи прочитает работу полностью» , — заканчивает Эйлер своё предисловие к книге. Дух времени требовал аналитического пути развития точных наук, применения дифференциального и интегрального исчисления для описания физических явлений. Этот путь и начал прокладывать Леонард Эйлер «30-летний Эйлер стал знаменитостью, — пишет его биограф Отто Шпис. — Однако плохо, что он жил в далёком Петербурге, где Академия не пользовалась должным уважением, и к тому же в постоянной вражде с «правителем дел» Шумахером» Обстоятельства ухудшились, когда в 1740 г. умерла императрица Анна Иоанновна, царём был объявлен малолетний Иоанн VI. «Предвиделось нечто опасное, — писал позднее Эйлер в автобиографии. — После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным» Эйлер принимает предложение прусского короля, который приглашал его в Берлинскую Академию на весьма выгодных условиях.
В соответствии с поданным «Эйлером прошением он был «отпущен от Академии в 1741 году» и утверждён почётным академиком. Он обещал по мере своих сил помогать Петербургской Академии — и действительно помогал весьма существенно все 25 лет, пока не вернулся обратно в Россию. В июне 1741 г. Леонард Эйлер с женой, двумя сыновьями и четырьмя племянниками прибыл в Берлин. В течение всего времени пребывания в Берлине Эйлер продолжал оставаться почётным членом Петербургской Академии. Как он и обещал при отъезде из Петербурга, он по-прежнему печатал многие из своих трудов в изданиях Петербургской Академии; редактировал математические отделы русских журналов; приобретал из Петербурга книги инструменты; при иной раз и у него на квартире, на полном пансионе, разумеется, за соответствующую оплату (которую, кстати, канцелярия Академии присылала с большим опозданием) , годами жили молодые русские учёные, командированные на стажировку В 1742 г. вышло четырёхтомное собрание сочинений И. Бернулли. Посылая его из Базеля Эйлеру в Берлин, старый учёный писал своему ученику: «Я посвятил себя детству высшей математики. Ты, мой друг, продолжишь её становление в зрелости» Эйлер оправдал надежды своего учителя. Одна за другой выходят его научные работы колоссальной важности: «Введение в анализ бесконечных» (1748 г.) , «Морская наука» (1749 г.) , «Теория движения луны» (1753 г.) , «Наставление по дифференциальному исчислению» (1755 г.) — не говоря уже о десятках статей по отдельным частным вопросам, печатавшихся в изданиях Берлинской и Петербургской Академий. Огромную популярность приобрели в XVIII, а отчасти и в XIX в. Эйлеровы «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе…» , которые выдержали свыше 40 изданий на 10 языках. Эйлер не стремится удивить читателя; он вместе с читателем как бы проходит весь путь, ведущий к открытию, показывает всю цепь рассуждений и умозаключений, приводящую к результату. Он умеет поставить себя в положение ученика; он знает, в чём ученик может встретить затруднение и стремится предупредить это затруднение. В 1757 г. Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения. Почти сто лет спустя, когда во многих странах — и, прежде всего, в Англии — стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов Эйлер «выдавал» в среднем 800 страниц «ин-кварто» в год. Это было бы немало даже для создателя романов; для математика же такой объём научных трудов очень чётко изложенных, включающих механику и теорию чисел, анализ и музыку, астрономию и физику, теорию вероятностей и оптику… — просто не укладывается в сознании!

Однако в 1762 г. на русский престол вступила Екатерина II, получившая прозвище «Великая» , которая осуществляла политику «просвещённого абсолютизма» . Она хорошо понимала значение науки как для процветания государства, так и для собственного престижа; провела ряд важных по тому времени преобразований в системе народного просвещения и культуры Фридрих II «отпускал» на Берлинскую Академию лишь 13 тыс. талеров в год, а Екатерине II ассигновала свыше 60 тыс. рублей — сумму более значительную. Императрица приказала предложить Эйлеру управление математическим классом (отделением), звание конференц-секретаря Академии и оклад 1800 рублей в год. «А если не понравится, — говорилось в письме, — благоволит сообщить свои условия, лишь бы не медлил приездом в Петербур г.» Эйлер подаёт Фридриху прошение об увольнении со службы. Тот не отвечает. Эйлер пишет вторично — но Фридрих не желает даже обсуждать вопрос об отъезде Эйлера. В ответ на это он перестаёт работать для Берлинской Академии 30 апреля 1766 г. Фридрих разрешает наконец-то уехать в Россию великому учёному. Сразу же по прибытии Эйлер был принят императрицей. Екатерина осыпала учёного милостями: пожаловала деньги на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии. После возвращения в Петербург у Эйлера образовалась катаракта второго, левого глаза — он перестал видеть. Однако это не отразилось на его работоспособности. Он диктует свои труды мальчику-портному, который всё записывал по-немецки. В 1771 г. в жизни Эйлера произошли два серьёзных события. В мае в Петербурге возник большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спас приехавший ранее из Базеля швейцарский ремесленник Петр Гримм. Все рукописи удалось уберечь от огня; сгорела лишь часть «Новой теории движения луны» , но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память Слепому старцу пришлось переселиться в другой дом, расположение комнат и предметов в котором было ему незнакомо.

Однако эта неприятность оказалась, к счастью, лишь временной. В сентябре того же года в Санкт-Петербург прибыл известный немецкий окулист барон Венцель, который согласился сделать Эйлеру операцию — и удалил с левого глаза катаракту. За работой приезжей знаменитости приготовились было наблюдать 9 местных светил медицины. Но вся операция заняла 3 минуты — и Эйлер снова стал видеть! Искусный окулист предписал беречь глаз от яркого света, не писать, не читать — лишь постепенно привыкать к новому состоянию. Но разве мог Эйлер «не вычислять» ? Уже через несколько дней после операции он снял повязку. И вскоре потерял зрение снова. На этот раз – окончательно. Однако, как ни странно, отнёсся он к событию с величайшим спокойствием. Научная продуктивность его даже возросла: без помощников он мог только размышлять, а когда приходили помощники, диктовал им или писал мелом на столе, кстати сказать, вполне разборчиво, ибо кое-как мог отличить белый цвет от чёрного В 1773 г. , кстати сказать, вполне разборчиво, ибо кое-как мог отличить белый цвет от чёрного В 1773 г. по рекомендации Д. Бернулли в Петербург приехал из Базеля его ученик Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера.

Вскоре Фусс женился на внучке Эйлера. В последующие десять лет — до самой своей смерти — Эйлер именно ему диктовал свои труды. В 1773 г. умерла жена Эйлера, с которой он прожил почти 40 лет. Это было большой потерей для учёного, искренне привязанного к семье. В последние годы жизни учёный продолжал усердно работать, пользуясь для чтения «глазами старшего сына» и ряда своих учеников В сентябре 1783 г. учёный стал ощущать головные боли и слабость. 18 сентября после обеда, проведённого в кругу семьи. Беседуя с А. И. Лекселем об недавно открытой планете Уран и её орбите, он внезапно почувствовал себя плохо. Эйлер успел произнести «Я умираю» — и потерял сознание. Через несколько часов, так и не приходя в сознание, он скончался от кровоизлияния в мозг «Эйлер перестал жить и вычислять» . Его похоронили на Смоленском кладбище в Петербурге. Надпись на памятнике гласила: «Леонарду Эйлеру — Петербургская Академия»

Cочинение «Эйлер — великий математик»

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был, прежде всего, математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность.

Имя Эйлера дорого всему прогрессивному человечеству, которое чтит в нём одного из величайших геометров мира. В качестве члена Петербургской и Берлинской Академий наук Эйлер содействовал развитию математических наук в обеих странах и распространению в них физико-математических знаний Леонард Эйлер был избран академиком (и почётным академиком) в восьми странах мира. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук.

Трудно даже перечислить все отрасли, в которых трудился великий учёный. Но в первую очередь он был математиком Неоценимо велика роль Эйлера в создании классических образцов учебной литературы и в стимулировании творчества многих поколений математиков. «Читайте, читайте Эйлера, он — наш общий учитель» , — любил повторять Лаплас. И труды Эйлера с большой пользой для себя читали — точнее, изучали — и «король математиков» Карл Фридрих Гаусс, и чуть ли не все знаменитые учёные последних двух столетий. Даже сейчас, через много лет после смерти Эйлера, его работы побуждают учёных всего мира к творчеству в самых различных областях математики и её приложений. Всем нам знакомы понятия о точках Эйлера, прямой Эйлера и окружности Эйлера в треугольнике; о теореме Эйлера для многогранников. Один из простейших методов приближённого решения дифференциальных уравнений, широко применявшийся до самых последних лет, называется методом ломаных Эйлера; во многих разделах математики важную роль играют Эйлеровы интегралы (бета-функция и гамма-функция Эйлера) . В механике при описании движения тел пользуются углами Эйлера, в гидродинамике рассматривается число Эйлера… Нет, пожалуй, ни одной значительной области математики, в которой не оставил бы след один из величайших математиков всех времён и народов, гений XVIII в. Леонард Эйлер. В 1963 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника.

А 15 апреля 1707 г. у них родился сын, названный Леонардом. Начальное обучение будущий учёный прошел дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого. Когда у Леонардо проявился интерес к учёбе, его направили в базельскую латинскую гимназию — под надзор бабушки. 20 октября 1720 г. 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета: отец желал, чтобы он стал священником. Но любовь к математике, блестящая память и отличная работоспособность сына изменили эти намерения и направили Леонарда по иному пути. Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике.

Читайте также:  Своеобразность творчества А. Камю ее связь с экзистенциализмом: сочинение

И немудрено, что способный мальчик вскоре обратил на себя внимание Бернулли. Он предложил юноше читать математические мемуары, а по субботам приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Николаем и Даниилом, также увлечённо занимавшимися математикой. А 8 июня 1724 г. 17-летний Леонард Эйлер произнёс по – латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона — и был удостоен учёной степени магистра (в XIX в. в большинстве университетов Западной Европы ученая степень магистра была заменена степенью доктора философии). В последующие два года юный Эйлер написал несколько научных работ. Другая работа, «Диссертация по физике о звуке» , также получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики. Но, несмотря на положительный отзыв о «Диссертации» , 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Однако это обстоятельство обернулось счастьем и для самого Эйлера и для науки в целом. Вначале зимы 1726 года Эйлеру сообщили из Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии. Эйлер был молод и полон энергии. Ни в магистрате, ни в университете он не мог найти применения своим силам и способностям. 5 апреля 1727 года он навсегда покидает Швейцарию В начале XVIII в. великий философ и математик Г. В. Лейбниц разработал проект создания академий в различных городах Европы.

По просьбе Петра I Лейбниц прислал и в Петербург несколько писем-рекомендаций по организации Академии.

Эйлер — великий математик: сочинение

Cочинение «Эйлер — великий математик»

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был, прежде всего, математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность.

Имя Эйлера дорого всему прогрессивному человечеству, которое чтит в нём одного из величайших геометров мира. В качестве члена Петербургской и Берлинской Академий наук Эйлер содействовал развитию математических наук в обеих странах и распространению в них физико-математических знаний Леонард Эйлер был избран академиком (и почётным академиком) в восьми странах мира. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук.

Трудно даже перечислить все отрасли, в которых трудился великий учёный. Но в первую очередь он был математиком Неоценимо велика роль Эйлера в создании классических образцов учебной литературы и в стимулировании творчества многих поколений математиков. «Читайте, читайте Эйлера, он — наш общий учитель» , — любил повторять Лаплас. И труды Эйлера с большой пользой для себя читали — точнее, изучали — и «король математиков» Карл Фридрих Гаусс, и чуть ли не все знаменитые учёные последних двух столетий. Даже сейчас, через много лет после смерти Эйлера, его работы побуждают учёных всего мира к творчеству в самых различных областях математики и её приложений. Всем нам знакомы понятия о точках Эйлера, прямой Эйлера и окружности Эйлера в треугольнике; о теореме Эйлера для многогранников. Один из простейших методов приближённого решения дифференциальных уравнений, широко применявшийся до самых последних лет, называется методом ломаных Эйлера; во многих разделах математики важную роль играют Эйлеровы интегралы (бета-функция и гамма-функция Эйлера) . В механике при описании движения тел пользуются углами Эйлера, в гидродинамике рассматривается число Эйлера… Нет, пожалуй, ни одной значительной области математики, в которой не оставил бы след один из величайших математиков всех времён и народов, гений XVIII в. Леонард Эйлер. В 1963 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника.

А 15 апреля 1707 г. у них родился сын, названный Леонардом. Начальное обучение будущий учёный прошел дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого. Когда у Леонардо проявился интерес к учёбе, его направили в базельскую латинскую гимназию — под надзор бабушки. 20 октября 1720 г. 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета: отец желал, чтобы он стал священником. Но любовь к математике, блестящая память и отличная работоспособность сына изменили эти намерения и направили Леонарда по иному пути. Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике.

И немудрено, что способный мальчик вскоре обратил на себя внимание Бернулли. Он предложил юноше читать математические мемуары, а по субботам приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Николаем и Даниилом, также увлечённо занимавшимися математикой. А 8 июня 1724 г. 17-летний Леонард Эйлер произнёс по – латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона — и был удостоен учёной степени магистра (в XIX в. в большинстве университетов Западной Европы ученая степень магистра была заменена степенью доктора философии). В последующие два года юный Эйлер написал несколько научных работ. Другая работа, «Диссертация по физике о звуке» , также получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики. Но, несмотря на положительный отзыв о «Диссертации» , 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Однако это обстоятельство обернулось счастьем и для самого Эйлера и для науки в целом. Вначале зимы 1726 года Эйлеру сообщили из Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии. Эйлер был молод и полон энергии. Ни в магистрате, ни в университете он не мог найти применения своим силам и способностям. 5 апреля 1727 года он навсегда покидает Швейцарию В начале XVIII в. великий философ и математик Г. В. Лейбниц разработал проект создания академий в различных городах Европы.

По просьбе Петра I Лейбниц прислал и в Петербург несколько писем-рекомендаций по организации Академии.

Величайший математик в мире: Леонард Эйлер

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет – Институт природных ресурсов

Направление – Экология и природопользование

Кафедра – Геоэкологии и геохимии

Величайший математик в мире: Леонард Эйлер

Реферат по курсу « Математика»

Выполнил студент гр. 2г21 22.12.12

Введение

Леонард Эйлер () — математик, механик, физик и астроном. По происхождению швейцарец.

В 1726 году Леонард Эйлер был приглашен в Петербургскую АН и переехал в 1727 в Россию. Был адъюнктом (1726), а в 1731-41 и с 1766 академиком Петербургской АН (в 1742-66 иностранный почетный член). В 1741-66 работал в Берлине, член Берлинской АН.

Л. Эйлер — ученый необычайной широты интересов и творческой продуктивности. Автор свыше 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и других, оказавших значительное влияние на развитие науки. За время существования Академии наук в России, считается одним из самых знаменитых ее членов.

Леонард Эйлер стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой — одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился 15 апреля 1707 года, в швейцарском городе Базеле. Его отец — Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал ее и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли — Николаем и Даниилом — возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской Академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдется и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард Эйлер немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Леонарда Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний X. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии , астроном и географ , математик и физик и другие. С этого времени Петербургская Академия стала одним из главных центров математики в мире.

Открытия Леонарда Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук: в 1727 году Леонард начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и талантливейшему юному мужу Леонарду Эйлеру», в 1737 году — к «знаменитейшему и остроумнейшему математику», а в 1745 году — к «несравненному Леонарду Эйлеру — главе математиков».

В 1735 году Академии потребовалось выполнить весьма сложную работу по расчету траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Л. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая: немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки. Затем в 1840 году Леонард Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.

В поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной Королевской Академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено математическому анализу. Математик так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж и, таким образом, сложилась новая наука.

В 1744 году Леонард Эйлер напечатал в Берлине три сочинения о движении светил: первое — теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений, второе и третье — о движении комет.

Семьдесят пять работ Леонард Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввел так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашел соотношение между числом вершин, ребер и граней многогранника: сумма числа вершин и граней равна числу ребер плюс два. Такое соотношение предполагал еще Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии — самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света (и написав немало мемуаров об этом предмете), Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Леонарда Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твердого тела, которые носят название Эйлеровых уравнений вращения твердого тела.

Много написал ученый сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал ученому поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Леонард Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почетным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей Академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учеными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С Котельников, С. Румовский, последние позднее стали академиками.

Читайте также:  Своеобразность творчества А. Камю ее связь с экзистенциализмом: сочинение

Из Берлина Эйлер, в частности, вел переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Леонарда Эйлера с его другом академиком Петербургской Академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечетное натуральное число есть сумма трех простых чисел, а всякое четное — двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком , а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

Еще в 1738 году Леонард Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на черной доске, но благодаря ученикам и помощникам: , , а главное , прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Леонард Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Леонард Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая ее и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Леонарда Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с ее сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Леонарду Эйлеру «противостоять ударам судьбы, которые выпали на его долю. Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным. » Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу. » — вспоминал .

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребенок, а на шее лежала кошка. Он сам занимался с детьми математикой. И все это не мешало ему работать.

Леонард Эйлер скончался 18 сентября 1783 года от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище. (Лютеранство – крупнейшее направление протестантизма. Основано Мартином Лютером в 16 веке). Академия заказала известному скульптору , хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарем Академии оставался , которого сменил , женившийся на дочери последнего, а в 1826 году — сын , так что организационной стороной жизни Академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников Чебышева: A. M. Ляпунова, , и других, определив основные черты петербургской математической школы.

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Леонард Эйлер нашел доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трех» и «четырех». Он также доказал, что всякое простое число вида 4п+1 всегда разлагается на сумму квадратов других двух чисел.

Л. Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределенных уравнений второй степени с двумя неизвестными.

Во всех этих трех фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объем элементарной теории чисел, ученый ушел очень далеко, однако во всех трех его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел — аналитической теории чисел, в которой глубочайшие тайны целых чисел, например распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Леонардом Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

16 известных и величайших математиков

Кто из величайших и самых известных математиков когда-либо жил? Что ж, его ответ нелегок, поскольку математика была известна человечеству с доисторических времен, задолго до рождения Христа.

Роль математики в нашей жизни огромна. Математика позволила передавать электричество на тысячи километров, помогла изучить концепцию ДНК, породила компьютеры, и в нашем стремлении лучше понять вселенную.

Без математики ученые не могут разрабатывать лучшие лекарства, а инженеры не могут исследовать новые технологии. У этого списка нет конца.

Как и большинство вещей, математика, которую мы знаем сегодня, возникла не просто случайно. Математикам требуются десятилетия, чтобы сформулировать новую революционную теорему и уравнение. Так кто же эти математики? Давайте разберемся.

16. Сриниваса Рамануджан

Известен: гипотеза Рамануджана – Петерссона; Основная теорема Рамануджана

Сриниваса Рамануджан был, пожалуй, самым замечательным математиком в современной Индии. Хотя Рамануджан не имел формальной подготовки, его продвинутые математические знания в очень молодом возрасте приводили многих в замешательство.

К 16 годам он смог изучать числа Бернулли, которые он сам разработал, и рассчитал постоянную Эйлера-Маскерони. Перед смертью в молодом возрасте 32 лет Рамануджан успешно собрал почти 4000 различных математических тождеств.

Он приобрел международную известность после того, как выдающийся британский математик Дж. Харди узнал его работу и сравнил его с такими, как Эйлер и Якоби .

15. Жозеф-Луи Лагранж

Известен: Лагранжевой механики; Небесная механика; Теория чисел

Джозеф Лагранж был одним из самых заметных учеников великого Леонарда Эйлера. Лагранж начал свою математическую карьеру с вариационного исчисления (в 1754 году), которое привело к формулировке уравнения Эйлера – Лагранжа.

Лагранж переформулировал классическую механику, чтобы представить механику Лагранжа несколько лет спустя. Его знаменитая работа по аналитической механике (Mécanique analytique) помогла другим исследователям развить область математической физики.

14. Эндрю Уайлс

Награды: Приз Волка (1995/6); Премия Абеля (2016)

Сэр Эндрю Джон Уайлс – британский математик, наиболее известный тем, что доказал последнюю теорему Ферма, некогда считавшуюся «самой сложной математической проблемой».

В 1975 году под руководством Джона Х. Коутса Эндрю Уайлс начал работать над теорией Ивасавы, которую он продолжил с американским математиком Барри Мазуром.

Однако его крупнейший прорыв произошел в начале 1990-х, когда он смог доказать большую часть теоремы модульности (ранее гипотеза Танияма-Шимура). Теорема модульности, по сути, связана с последней теоремой Ферма и была достаточной для ее доказательства.

Мистер Уайлз в настоящее время работает профессором-исследователем в Оксфордском университете.

13. Карл Густав Джейкоб Якоби

Известен: эллиптических функций Якоби; Преобразование Якоби

Карл Густав Якоби был одним из выдающихся математиков 19-го века. Его формулировка теории эллиптических функций , возможно, является его величайшим вкладом в эту область. Якоби также сыграл важную роль в исследованиях дифференциальных уравнений и рациональной механики (теория Гамильтона-Якоби).

Кроме того, он внес фундаментальный вклад в области механической динамики и теории чисел.

12. Алан Тьюринг

Известен: Криптоанализ загадки, Доказательства Тьюринга, премия Смита (1936)

Во время Второй мировой войны немецкая разведывательная сеть считалась почти непробиваемой. Многие союзные страны боялись, что, если они не смогут перехватить важные передачи нацистского верховного командования, они могут в конечном итоге проиграть войну.

Это был Алан Тьюринг, который благодаря своим беспрецедентным математическим и криптоаналитическим способностям значительно улучшил бомбу польского производства и разработал машину, способную быстрее декодировать Enigma.

После окончания войны Тьюринг присоединился к Национальной физической лаборатории (Великобритания), где он разработал автоматический вычислительный движок, один из самых ранних компьютеров с хранимой программой.

Позже в своей карьере он отвлек свое внимание на теоретическую биологию. Именно в это время он предсказал (математически) реакцию Белоусова – Жаботинского , которая позднее наблюдалась в 1960-х годах.

11. Г.Ф. Бернхард Риман

Известен: интеграл Римана; Ряд Фурье

Георг Бернхард Риман родился в небольшой деревне недалеко от Данненберга, Германия. Под руководством Карла Фридриха Гаусса Риман изучал дифференциальную геометрию и выдвигал свою теорию дополнительных или более высоких измерений . Его работа теперь известна как риманова геометрия.

На Римана оказал сильное влияние Иоганн Густав Дирихле, который также оказал влияние на его математическую карьеру. Только используя принцип Дирихле, он смог сформулировать знаменитую теорему Римана о отображении.

Некоторые из его математических уравнений были позже использованы Эйнштейном в его общей теории относительности.

10. Анри Пуанкаре

Известен: проблема с тремя телами; Теория хаоса; Теорема Пуанкаре – Хопфа

По словам Эрика Белла, известного шотландского математика, Анри Пуанкаре был, вероятно, одним из последних универсалистов, поскольку в то время он процветал почти во всех известных областях математики.

В течение своей жизни Пуанкаре внес многочисленные теории в области математической физики, прикладной математики и астрономии. Он сыграл важную роль в разработке теории специальной теории относительности .

Более того, его исключительные работы по преобразованию Лоренца и проблеме трех тел проложили путь математикам, а также астрофизикам к открытиям о нашей планете и космосе. Его теоретические работы даже вдохновили известных художников, таких как Пикассо и Брак, создать художественное движение (кубизм) в 20-м веке.

9. Дэвид Гильберт

Известен: теории доказательств; Проблемы Гильберта

Дэвид Гильберт был, пожалуй, самым известным математиком времени. Он сыграл важную роль в разработке фундаментальных теорий в области коммутативной алгебры, вариационного исчисления и математической физики.

Проблемы Гильберта (набор из двадцати трех математических задач, которые он опубликовал в 1900 году) повлияли на новаторские исследования в различных областях математики. Некоторые из этих проблем до сих пор не решены .

В последние дни Дэвид Гильберт посвятил себя физике. Именно в это время он соревновался с Альбертом Эйнштейном в общей теории относительности.

8. Фибоначчи

Известен по : числам Фибоначчи

Фибоначчи, также известный как Леонардо из Пизы, был одним из самых опытных математиков высокого средневековья.

Возможно, его самым важным вкладом в этот предмет является книга Либера Абачи, в которой он популяризировал индо-арабскую систему счисления (0,1,2,3,4 . ) и последовательность Фибоначчи в Европе.

Последовательность Фибоначчи используется в компьютерных алгоритмах и базах данных.

7. Семья Бернулли

В мире математики семья Бернулли занимает особое место. Родом из Антверпена (Бельгия), Джейкоб и его брат Иоганн Бернулли были первыми математиками в этой семье.

И Джейкоб, и Иоганн работали вместе над бесконечно малым исчислением, и им приписывают теоремы и обоснования, такие как числа Бернулли и кривая Брахистохрона .

Даниэль Бернулли, сын Джейкоба, был одним из самых выдающихся членов семьи Бернулли. Его наиболее известная работа, принцип Бернулли, математически объясняет работу карбюратора и крыла самолета . Он также внес существенный вклад в области вероятности и статистики.

6. Пифагор

Известен: теорема Пифагора; Теория Пропорций

Пифагор Самосский родился около 570 г. до н.э. Как и большинство древних греков, о его молодости известно немногое. Как философ, его работы оказали влияние на Платона и Аристотеля, а также на Иоганна Кеплера и Исаака Ньютона.

Хотя его подлинность остается дискуссионной, многие математические выводы приписываются Пифагор. Возможно, самая известная из них – теорема Пифагора (названная в его честь). Многие историки утверждают, что эта теорема была известна вавилонянам задолго до Пифагора.

Пифагор, возможно, также был ответственен за открытие Теории Пропорций.

5. Карл Фридрих Гаусс

Награды: премия Лаланде (1809), медаль Копли (1838)

Карл Фридрих Гаусс был, пожалуй, самым влиятельным математиком со времен древних греков. Его вклад в различные области математики и физики практически не имеет аналогов. Гаусс начал проявлять математические способности в возрасте семи лет, когда он мог решать арифметические прогрессии намного быстрее, чем кто-либо в своем классе.

Некоторые из его популярных работ включают Закон Гаусса и Теорема Egregium, в которых сделан вывод, что Земля не может быть отображена на карте без искажений. Он был первым, кто предположил возможность неевклидовой геометрии, хотя его работы никогда не публиковались.

4. Иссак Ньютон

Известен: законы движения Ньютона; Исчисление; Ньютоновская механика

Сэр Иссак Ньютон является одним из основателей классической механики, а также исчисления бесконечно малых. Его взгляды на гравитацию оставались общепринятыми до теории относительности Эйнштейна.

Самый замечательный вклад Ньютона в математику – исчисление (тогда называемое бесконечно малыми), которое он разработал независимо от своего современника Готфрида Вильгельма Лейбница .

Это был Ньютон, который первым объяснил причину приливных возмущений на Земле и помог проверить закономерности движения планет Кеплера. Его работы по оптике дали нам первый в мире преломляющий телескоп.

3. Леонард Эйлер

Известен: догадки Эйлера; Уравнения Эйлера; Числа Эйлера

В знак уважения к вкладу Леонарда Эйлера в математику Пьер-Симон Лаплас, известный французский астроном и математик, написал: «Читайте Эйлера, читайте его снова и снова, он – мастер всех нас».

Сегодня математики высоко ценят Эйлера и считают его самым важным математиком 18-го века.

Эйлер внес значительный вклад почти во все основные области математики, включая алгебру, тригонометрию и геометрию. В физике его работы по гидродинамике и рядам Фурье не имеют себе равных.

2. Архимед

Известен : принцип Архимеда; гидростатика

Архимед родился примерно в 287 г. до н.э. в Сиракузах, Сицилия. Он хорошо разбирался в математике, физике и астрономии того времени. Он был эрудитом. Однако большинство его литературных произведений не сохранилось.

Архимед был одним из пионеров геометрии, который вывел формулы для площади круга, объема и площади поверхности сферы. Его метод определения значения числа пи оставался бесспорным и единственным известным способом вычисления окружности круга на протяжении десятилетий.

Филдса, самая высокая честь в области математики, несет портрет (справа облицовочный) Архимед вместе с цитатой приписываемой ему.

«Transire suum pectus mundoque potiri» – поднимись над собой и овладей миром.

1. Евклид

Известен: евклидовой геометрии; Евклидов алгоритм

Евклид Александрийский был греческим математиком, которого многие считают основателем геометрии. Euclid’s Elements, сборник из 13 книг, считается одной из самых старых и влиятельных книг по математике.

Хотя геометрия (которая теперь известна как евклидова геометрия) является фокусом в Элементах Евклида, она также имеет всеобъемлющее введение в теорию элементарных чисел. Его работы по оптике также получили широкое признание.

Системный подход Евклида в его работе – начиная с аксиом и затем логически получая сложные результаты, оказал влияние на некоторые из величайших умов последующих поколений. Principia Mathematica Ньютона – прекрасный пример этого.

Ссылка на основную публикацию
×
×